
 

Abstract— Interconnection networks based on the k-ary 

n-tree topology are widely used in high-performance 

parallel computers. However, this topology is expensive 

and complex to build. In this paper we evaluate an 

alternative tree-like topology that is cheaper in terms of 

cost and complexity because it uses fewer switches and 

links. This alternative topology leaves unused upward 

ports on switches, which could be rearranged to be used as 

downward ports. The increase of locality can be efficiently 

exploited by applications. We test the performance of these 

thin trees, and compare it with that of regular trees. 

Evaluation is carried out using a collection of synthetic 

traffic patterns that emulate the behavior of scientific 

applications. We also propose a methodology to perform 

cost and performance analysis of different networks. Our 

main conclusion is that, for the set of studied workloads, 

the performance drop in thin trees is very low, while the 

cost savings can be significant which leads to an 

increasement in performance/cost efficiency. 

Keywords—interconnection networks; parallel job 

scheduling; resource allocation; trace-driven simulation. 

I. INTRODUCTION 

urrent high-performance computing facilities are 

composed of thousands of computing nodes 

executing jobs in parallel. An underlying 

interconnection network (such as Myrinet  [10], 

Infiniband  [7], QsNet  [15], or an ad-hoc network) 

provides a mechanism for tasks to communicate. Most 

of these facilities belong to national laboratories or 

supercomputing centers, and are shared by many 

researchers (see the Top500 list  [5]). 

The k-ary n-tree topology  [16], based on the classical 

fat-tree topology introduced by Leiserson  [8], is often 

the topology of choice to build low latency, high 

bandwidth and high connectivity interconnection 

networks (hereafter IN) for parallel computers. Its main 

characteristics are the low mean path length and the 

multitude of paths from a source to a destination node, 

which increases exponentially with the distance between 

nodes (in number of hops). This high path diversity 

provides good communication performance for almost 

all kind of workloads, independently of their spatial, 

temporal and length distributions. 

A network design that ignores locality could be a good 

option because it provides high performance even in 

worst-case scenarios. However, regular parallel 

applications usually arrange their processes in such a 

way that communicating processes are kept in close 

proximity, in order to obtain advantages from locality in 

communication. For this reason, the highest levels of 

this topology tend to be infra-utilized when managing 

application traffic. 

                                                           
1
 Department of Computer Architecture and Technology, The 

University of the Basque Country UPV/EHU. Contact E-mail: 

{javier.navaridas, j.miguel}@ehu.es 
2
 IBM Research GmbH, Rüschlikon, Switzerland. Contact E-mail: 

wde@zurich.ibm.com 

Taking this into consideration, we can reduce cost and 

complexity of the IN by means of reducing the ratio 

between the number of links connected to the upper tree 

levels and those connected to the lower ones. This can 

be done reducing the radix of the switches or, 

alternatively, increasing the locality by rearranging the 

upward ports and making them downward. In both cases 

the cost of the system is reduced: fewer switches, fewer 

links and, in the former case, switches of lower 

complexity. If parallel applications exploit locality in 

communications or do not make intensive use of the 

network, performance should not suffer. They could 

even experience an improvement due to the increased 

locality of the latter case.  

In this paper we evaluate thin trees, a network 

topology directly derived from the k-ary n-tree topology 

that uses a constant reduction of the ratio between the 

number of upward and downward ports in all switches. 

Therefore the aggregate bandwidth of each level is 

reduced accordingly to its height: lower levels have 

more aggregate bandwidth than higher ones. This leads 

to a reduction of the total amount of switches in the 

network, which, consequently, reduces cost and 

complexity of the interconnection network. Ideally we 

would evaluate performance using real traces taken from 

actual scientific applications running on very large 

systems but, as large traces are difficult to obtain and not 

very manageable, we have used a collection of synthetic 

workloads that emulate their behavior. This mimicry is 

done not only in terms of spatial patterns, but also in 

terms of the causality of the injected messages. 

We have selected some instances of the topologies 

under study, fed the simulator with the proposed 

workloads and measured their performance. A 

comparison of alternatives is done taking into 

consideration raw performance and performance/cost 

efficiency. As performance is application-dependent, we 

define a model to compute a performance indicator that 

can be tailored to fit the characteristics of a given 

supercomputing center. We will see that, in terms of this 

indicator, the k-ary n-tree shows its superiority as a 

general-purpose topology, although slimmed topologies 

perform equally well for some relevant application 

mixes. If cost is considered too, the complexity of the k-

ary n-trees plays against them and the thin tree is the 

clear winner: cost is lower and performance is good. 

The rest of this paper is organized as follows. Section 

II provides the motivation of this work. In Section III we 

present the topologies that we will evaluate. The 

experimental environment (topologies, switches and 

workloads) is explained in Section IV. In Section V we 

show the results of the experimental work and analyze 

them taking into account the raw performance as well as 

the performance/cost efficiency. To do so, we propose 

performance and cost functions. Some related work is 

discussed in Section VI. Finally, we close this work with 

some concluding remarks in Section VII. 

Thin trees: Cost-Effective Tree-like Networks 

Javier Navaridas1,  Jose Miguel-Alonso1,  Wolfgang Denzel2 

C 



 

II. MOTIVATION 

To show intuitively the motivation of this work we 

executed traces of the well-known NAS  [11] parallel 

benchmarks (class A and 64 processes) in a 4-ary 3-tree 

(64 nodes) and plotted the percentage of packets that 

used each level in Fig. 1. We can see how in all the 

benchmarks the first level is used by all the packets, but 

subsequent levels have lower utilization. In most cases 

the second level is used by less than 75% of the packets, 

and the third level is used by less than 33% of the 

packets. The only exceptions are the FT and IS 

benchmarks, whose communication patterns force every 

node to exchange data with all the other nodes; in other 

words, traffic does not exhibit locality. At any rate, even 

in these two benchmarks the utilization of level 3 is 

around 25% lower than the utilization of the first level. 
 

Level Utilization – NAS traces – 4,3-tree

0%

25%

50%

75%

100%

125%

BT CG EP FT IS LU MG SP

%
 o
f 
p
a
c
k
e
ts
 u
s
in
g
 e
a
c
h
 l
e
v
e
l

level 0 level 1 level 2

 
Figure 1. Fraction of packets using each level of the tree. 
 

This motivates the reduction of the bandwidth in the 

upper levels of the topology as their utilization is 

noticeably lower than that of the first level. As the 

reduction of the bandwidth in each level would depend 

on the application (or application mix) to be executed, 

for the sake of simplicity in this paper we will focus 

only on constant reduction ratios between consecutive 

stages. 

III. TOPOLOGIES UNDER STUDY 

In this section we will describe two different multi-

stage, tree-based topologies. In these descriptions we 

assume that all switches used to build a given network 

have the same radix. For the purpose of this paper we 

leave unplugged the upward ports of the topmost level 

of switches. This assumption has advantages in terms of 

simplicity in the descriptions, and also provides 

scalability. The disadvantage is in terms of cost, because 

some resources are unused; this is particularly relevant 

for those topologies with more switches in the top level. 

In practical implementations, all ports of the highest 

switch level may be used as downward ports, eventually 

providing connectivity to a larger number of compute 

nodes. Alternatively, we may consider a single switch as 

an aggregation of lower radix virtual switches, which 

results in a smaller number of switches in the topmost 

stage of the system. 

A. Definitions 

In the graphical representations of the topologies (see 

Fig. 2), boxes represent switches and lines represent 

links between them. Note that we neither show the 

compute nodes and links connected to the first level 

switches, nor the last level of upward links (which, as 

we stated before, are unplugged). These elements are 

hidden for the sake of simplicity.  

Throughout this paper we will use n to denote the 

number of levels in a network, and N to denote the 

number of compute nodes attached to it. We will denote 

the total number of switches in a topology as S, and the 

number of switches at level i as Si. The total number of 

links will be denoted as L. The switch radix will be 

denoted as R. We call the relation between the number 

of downward ports of a switch and the number of 

upward ports the slimming factor. For example, taking a 

look at the switches in the topology shown in Fig. 2b, 

four ports are downward ports, linked to switches in the 

next lower level. The remaining two ports of each 

switch are upward ports that connect to switches in the 

next higher level; therefore the slimming factor is 2:1. 

In the topological descriptions that follow, we denote 

each switch port within the system as the level where the 

switch is, the position of the switch in that level, and the 

number of the port in that particular switch. We call the 

lower level of switches (those attached to compute 

nodes) level 0; obviously, level n-1 is the one on the top 

of the tree. We number the switches in each level from 

left to right, starting from 0. Ports in a switch are 

denoted as upward (↑) or downward (↓), and numbered 

from left (0) to right. Thus, a port can be addressed as a 

4-tuple <level, switch, port, direction>. 

Given two ports P and P’, they are linked (P↔P’) 

when there is a connection (link) between them. As links 

are full-duplex, in the expressions concerning linkage 

we avoid the redundancy of showing downward 

connections. We will call level l, switch s and port p the 

address components of a given downward port, and level 

l’, switch s’ and port p’ the address components of the 

port to which it is connected, i.e. a downward port in a 

switch located at the level above. 

Along this paper, we will refer to heavy and light 

workloads. Light workloads are those in which the 

number of messages circulating simultaneously through 

the network is low. In contrast, heavy workloads are 

those in which most of the nodes are injecting messages 

  

Figure 2. Samples of the topologies under study to build 64 nodes networks. A 4,3-tree (left) and a 4:2,3-thintree (right). 

 



at once so that the network will experience peaks of 

congestion; this situation would be even worse if 

messages are addressed to distant destinations. 

B. k-ary n-tree 

This is the best-known of the topologies considered in 

this study. It will be the yardstick to compare the thin 

tree against. In k-ary n-trees  [16] k is half the radix of 

the switches—i.e., the number of links going upward (or 

downward) from the switch—and n is the number of 

levels. It will be denoted through this paper as k,n-tree. 

Notice that its slimming factor is always 1:1. 

A k,n-tree is typically built in a butterfly fashion 

between each two contiguous levels, Fig. 2a shows a 

depiction of a 4,3-tree. The topological neighborhood 

description is as follows: 

l 0, n 1 , s 0, k n l , p 0, k

l ' l 1

s ' p · k
l

s  mod k
l

k
l 1

·
s

k
l

1
 mod k

n 1

p '
s

k
l

k
l 1

·
s

k
l

 mod k

l , s , p , l ' , s ' , p ' ,
 

The main advantages of this topology are the high 

bisection bandwidth and the large number of routing 

alternatives for each pair of source and destination—a 

path diversity that can be exploited via adaptive routing. 

Nevertheless, they might be expensive and complex to 

deploy, because of the large number of switches and 

links. 

C. k:k’-ary n-thintree 

We define a thin tree as a cut-down version of a k-ary 

n-tree in which we apply a given slimming factor. We 

will denote it as k:k',n-thintree, being k the number of 

downward ports, k' the number of upward ports and n 

the number of levels. The slimming factor is, the ratio 

between k and k’. Note that k does not need to be a 

multiple of k’ so that we can produce a thin tree with 

arbitrary values of k and k’. A k,n-tree is actually a k:k,n-

thintree.  

A 4:2,3-thintree is depicted in Fig. 2b. Removed 

switches and links from a full-fledged k-ary n-tree are 

shaded. The topological neighborhood relationship 

between ports in a thin tree is described as follows: 

l 0, n 1 , s 0, k ·
k

k '

n l

, p 0, k '

l ' l 1

s ' p· k '
l

s  mod k '
l s

k ·
k

k '

l
· k ' ·

k

k '

l

p '
s

k

k '

l
 mod k

l , s , p , l ' , s ' , p ' ,
 

In this topology the bisection bandwidth has been 

reduced, as well as the number of switches and links 

(i.e., cost and complexity). We want to investigate how 

applications suffer these reductions. Thin trees are easier 

to deploy than regular trees and, if k and n values are 

kept, the radix of the switches is smaller. 

Table I closes this section showing the expressions to 

compute the total number of nodes (N), the total number 

of switches (S), the number of nodes per level (Si), the 

number of links (L) and the radix of the switches (R) 

from the parameters of the networks (k, k’ and n), both 

for k,n-trees and k:k’,n-thintrees. 
 

TABLE I.  
CHARACTERISTICS OF THE NETWORKS 

 k,n-tree k:k',n-thintree 

Nodes nkN =  nkN =  

Switch radix kR ⋅= 2  'kkR +=  

Switches 1−⋅= nknS  ∑
−

=

−− ⋅=
1

0

1)('
n

i

iin kkS
 

Switches per level 
  ]1,0[ −∈∀ ni  

1−= n

i kS  iin

i kkS '1)( ⋅= −−  

Links kSL ⋅=  kSL ⋅=  

IV. EXPERIMENTAL SET-UP 

We used INSEE  [17] to evaluate some different tree-

like networks, feeding them with a collection of 

workloads. The simulator measures time in terms of 

cycles, the time required by a phit (physical transfer 

unit) to traverse one switch. 

A. Switches 

For this work, we have chosen simple input-buffered 

switches whose radices range from 10 to 16, depending 

on the topology. In order to keep things simple, we do 

not use virtual channels. The arbitration of each output 

port is performed in a random way, that is, every time an 

output port is free it randomly chooses among all the 

input ports that have requested this resource. Transit 

queues are located in the input ports and are able to store 

up to four packets. A schematic model of the switch is 

depicted in Fig. 3. The input ports (at the left) have the 

packets queues and are connected to the output ports (at 

the right) by means of a crossbar. 
 

0

1

R-1

Crossbar

0

1

R-1

 
Figure 3. Model of a radix-R switch. 

 

In this work we model the node as a traffic generation 

source with one injection queue, which is able to store 

four packets. It is also the sink of the arrived messages. 

When generating traffic, we consider reactive sources, 

meaning that the reception of a message may trigger the 

release of a new one. This way, we can model the 



 

causality inherent to actual application traffic. Messages 

are split into packets of a fixed size of 16 phits. One phit 

is the smallest transmission unit, fixed to 32 bits. If a 

message does not fit exactly in an integral number of 

packets, the last packet contains unused phits. 

The switching strategy is virtual cut-through. Routing 

is, when possible, adaptive using shortest paths. A 

credit-based flow-control mechanism is used, so that 

when several output ports are available, the one with 

more available credits is selected. Credits are 

communicated out-of-band, so they do not interfere with 

application traffic. 

B. Networks under Study 

In this work we fixed the number of downward ports 

per switch (set to 8) and slimming factors (set to 2:1 and 

4:1). We also fixed the target number of connectable 

compute nodes to 4096. With these restrictions, we 

worked with the following topologies: 8,4-tree, 8:4,4-

thintree, 8:2,4-thintree. Table II summarizes some 

characteristics of the studied networks. Reader should 

note that all the switches have 8 downward ports, but the 

actual radix of the switches is not always the same, 

being smaller in the more slimmed topologies. Thus, in 

this evaluation the complete tree has advantage 

compared with the thinner alternatives: it uses more 

links, and more switches that are also larger. 

Consequently, performance measurements are biased 

towards the 8,4-tree. 
 

TABLE II.  

CHARACTERISTICS OF THE TOPOLOGIES UNDER STUDY. 

 8,4-tree 8:4,4-thintree 8:2,4-thintree 

Radix 16 12 10 

Switches 2048 960 680 

Links 16384 7680 5440 

Nodes 4096 4096 4096 
 

C. Workloads 

As we stated in the introduction, we would like to test 

the selected networks with realistic traffic, ideally taken 

from traces obtained from applications running in actual 

supercomputers. Since it is difficult to obtain and handle 

traces of applications running on thousands of nodes, we 

decided to use instead some synthetic traffic generators 

which emulate data interchanges typically used in 

scientific parallel applications. Note that we assume a 

mapping of one process to one compute node attached to 

one leave of the network. 

The selected workloads are all-to-all (AA), binary tree 

(BI), butterfly (BU), nearest neighbor communication in 

2D (M2) and 3D (M3) meshes, and wave-front 

communication in 2D (W2) and 3D (W3) meshes. Their 

spatial and causal patterns are defined and justified in 

 [12] and  [13]. They were generated for a fixed network 

size of N=4096 communicating nodes and message 

lengths of 10KB. The only exception is AA whose 

messages are noticeably shorter (512B length) to allow 

reasonably short simulation times—note that the number 

of messages in this communication pattern scales 

quadratically with the number of nodes. 

Furthermore four synchronized random workloads 

 [12] have been generated. These workloads are 

composed of 65536 messages of 1KB each and waves of 

1 (R1), 1024 (R2), 4094 (R3) and 16386 (R4) messages, 

which emulate four different levels of application 

coupling. 

BI, W2 and W3 can be considered light workloads as 

they have highly causal communication patterns which 

only allow a few messages traversing the network at 

once. In contrast, the remaining workloads can be 

considered heavy as most of the nodes try to use the 

network simultaneously, which can drive the network in 

a highly congested state. This is especially true for AA 

and the random workloads (R1, R2, R3 and R4) as they 

do not exhibit locality in communications. Note that 

random workloads with a large amount of messages per 

wave are heavier than those with small wave length, as 

the processing nodes need to synchronize less often and 

therefore they keep injecting traffic in the network for 

long periods of time, which exacerbates congestion. 

V. EXPERIMENTS AND ANALYSIS OF RESULTS 

In this section we evaluate the previously described 

networks using the selected mix of workloads. We 

gathered the time (in simulation cycles) used by the 

networks to deliver all the messages of each workload. 

As these times differ widely, due to their characteristics, 

we normalized them, using the times taken by the 

complete trees as the reference. These normalized times 

are plotted in Fig. 4. 

The reader can observe that the two thin tree networks 

perform acceptably well in light traffic patterns. With 

them, the k-ary n-tree cannot take advantage of its high 

bandwidth and path diversity, just because the network 

occupancy is low and so is the probability of two 

packets competing for an output port of a switch. In 

contrast, under heavy loads, the high bandwidth of the k-

Normalized execution time –  4096-node networks

0

5

10

15

20

25

AA BI BU M2 M3 R R2 R3 R4 W2 W3

S
lo
w
d
o
w
n

8,4-tree

8:4,4-thintree

8:2,4-thintree

 
Figure 4. Time required by each network to deliver the complete workloads (normalized to the 8,4-tree). 



ary n-tree topology is able to handle the high amount of 

packets inside the network. In the thin networks there is 

too much contention due to the bandwidth reduction 

between each level so the packet delivery is slower. 

However the 8:4,4-thintree obtained not-so-bad 

performance figures that required always below three 

times the time required by the 8,4-tree. Note that the 

measured times include only communication time and, 

therefore the actual execution time of an application will 

depend on its communication-computation ratio. Note 

also that the full-fledged tree used higher radix switches 

and, thus has advantage over the thin-trees. If we devote 

the unused ports of the thin-trees to be used as 

downward ports we will increase locality and therefore 

better communication times would be obtained. This 

evaluation will not be carried out because of the limits in 

paper length, but we encourage the interested reader to 

look at  [14] for a detailed evaluation of this issue. 

We can conclude, from the point of view of raw 

performance, that the k-ary n-tree is the best-performing 

topology in all experiments, therefore if we had 

unlimited (financial) resources we could just select it as 

the best-performing option. Nonetheless that option may 

not be the most cost-effective. 

Here we propose a means to measure the effectiveness 

of a network taking into account the workloads using it. 

Actual workloads vary widely from site to site, 

depending on the applications in use. In this work we are 

not using actual applications, but a collection of 

synthetic—but representative—workloads. We describe 

a network-efficiency function in the context of these 

workloads that can be extended with further workload 

types. 

For each given workload simulation reports a (relative) 

time TW. For example, we have a certain execution time 

TBU for butterfly. Note that as these values are relative: 

they are always 1 for the k-ary n-tree. Depending on the 

application mix of interest in a particular computing 

center, we may apply a weighting factor to each 

experiment wW. This weight should be large for those 

applications that are used often. For a given network, we 

define its performance φ as follows: 

∑
=

W

WW Tw ·

1
ϕ

 

Note that for a given application mix and set of 

weights a higher value of φ represents a better-

performing network. As we cannot identify all 

representative application mixes, in this paper we 

decided to use 1 for all the weights. With this, the 

denominator in our efficiency value is just the addition 

of the (relative) times obtained in the experiments. This 

yields a value of φ=1/11 for the k-ary n-tree. We further 

normalize this value (multiplying it by 11). Table III 

shows the normalized performance values for all the 

experiments. 

Performing an exhaustive cost analysis of a complete 

system is, clearly, a difficult task, that requires the 

knowledge of a large number of parameters, including 

the choice of technologies and physical placement of the 

elements of the system (nodes, racks). This is out of the 

scope of this paper. For this reason, we will consider 

three simple cost functions to compute the cost of each 

network in order to be able to carry out a 

performance/cost comparison. In the first function (cC) 

the cost of the switch is constant regardless of the radix 

of the switch, in the second one (cL) the cost of the 

switch lineally depends on the radix and in the third one 

(cQ) the cost increases quadratically with the radix—

which is the more accurate as it does so for the heart of 

the switch (the crossbar  [6]). To simplify these 

functions, the number of links is not taken into account 

as it depends on the number of switches. Hence, the 

three functions are as follows: 
2·,·, RScRScSc QLC ===  

The value for the three cost functions, as well as the 

cost-efficiency—computed as the performance divided 

by the cost—of the three systems under study are show 

in Table III. 
 

TABLE III.  

PERFORMANCE/COST EFFICIENCY OF THE TOPOLOGIES UNDER STUDY. 

 8,4-tree 8:4,4-thintree 8:2,4-thintree 

φ 1.00 0.60 0.11 

cC 1.00 0.47 0.33 

φ/cC 1.00 1.27 0.35 

cL 1.00 0.35 0.21 

φ/cL 1.00 1.70 0.55 

cQ 1.00 0.26 0.13 

φ/cQ 1.00 2.26 0.88 

 

We can see how, for the three cost functions, the 

performance/cost efficiency of the 8:4,4-thintree 

overtakes those from the complete tree. The efficiency 

of the 8:2,4-thintree, however, is lower than that of the 

8,4-tree, even for the quadratic cost function. In this case 

savings are significant, but result in a very poorly 

performing system. The conclusion here is that a thin 

tree can achieve better performance/cost efficiency than 

a full fledged tree, but not for every slimming factor. In 

other words, the selection of a good sliming factor 

requires a thorough fine-tuning process. 

VI. RELATED WORK 

Indirect interconnection networks have evolved 

noticeably from the first multi-stage networks as those 

proposed by Clos in  [2]. Those networks were built with 

low-radix switches (typically 2, 4 or 8) and aimed to 

interconnect at most a few hundred nodes. Current 

spines, as that on the Mare Nostrum supercomputer  [1], 

have switches with hundreds of ports and are able to 

interconnect several thousands of nodes. Former trees 

were low-radix: for example, the CM-5  [9] had a radix-8 

data network. Current ones use switches with higher 

radices, as those radix-24 of the Cray XD1  [3]. There 

are also recent tree-like proposals as the Black Widow 

Clos network  [4] that takes advantage of the high 

availability of ports (radix-64 switches) to add side-links 

to the common tree-like arrangement. However, the 

most noticeable change in these networks is that former 

indirect networks were built ad-hoc for the target 

systems, whereas current high-performance networking 

technologies as QsNet  [15], Myrinet  [10] or InfiniBand 

 [7] have favored building super-clusters with off-the-

shelf components. 

Network bandwidth and latency have also experienced 

noticeable improvements during the last decade, from 



 

the 800Mbps of the ASCI Red (1997)  [18] to the 100-

120 Gbps in the 100G Ethernet or the InfiniBand 12X-

QDR. This takes us to a network bandwidth 

improvement of two orders of magnitude in the last 

decade. The latency of the full protocol and the network 

in the ASCI Red (taking into account the message 

passing library) is 12µs. Both Myri-10G and InfiniBand 

latencies are around 2µs. Thus, latency has been 

improved (one order of magnitude), but not as 

noticeably as bandwidth has. 

Taking a look at the Top500 list  [5], we can see two 

clear trends. On the one hand, the choice of topology for 

custom-made, massively parallel computers is the 3D 

cube. On the other, commodity-based systems (super-

clusters) are built around the class of trees discussed in 

this paper. Most of the machines in the middle positions 

are arranged this way, which justifies our interest in 

tree-like topologies. At least three super-clusters that are 

in positions #1 (RoadRunner), #29 (Tsubame) and #47 

(Thunderbird) of the November 2009 edition of this list 

were built with Infiniband networks arranged as thin 

trees—actually, spines. In Thunderbird the slimming 

factor is 2:1; RoadRunner and Tsubame goes further, to 

4:1 and 5:1 respectively. 

We have not found any evaluation work providing the 

rationale behind those decisions. However, in this work 

we have shown that, compared to full-fledged k-ary n-

trees, thinner topologies provide comparable 

performance at much lower cost. The savings in the 

networking elements could be invested in other ways to 

improve the system (faster CPUs, better performing 

networking technology, enlarge the system, etc). 

VII. CONCLUSIONS  

In this paper we have described and characterized a 

slimmed version of k-ary n-trees: k:k’-ary n-thintrees. A 

thin tree can be seen as a k-ary n-tree after removing 

some links and switches. A thin tree costs a fraction of 

the price of a complete tree, in terms of deployment and 

maintenance. In terms of performance, thin trees with 

low slimming factor perform as well as comparable k-

ary n-trees. Excessive slimming (beyond 2:1 in our 

workbench) results in awful performance results. In our 

experiments a comparison of performance/cost 

efficiency turns out to be very favorable for the thin 

trees with a 2:1 slimming factor. More slimmed 

topologies (4:1 in our set-up) showed to be unable to 

beat regular k-ary n-tree in terms of cost-efficiency. 

Thin trees are obviously cheaper than the complete 

tree, but their bandwidth in the upper levels is greatly 

reduced. After removing links and switches in the upper 

levels, performance could be maintained (or even 

increased) due to an effective exploitation of locality 

 [14]. Using fixed-radix switches, a thin tree devotes 

more ports as downward links, so more nodes can 

communicate without using the upper levels. 

The reader should note that the network is only a part 

of the system, so that the execution time depends 

(greatly) on the behavior of the other components, and 

the interactions among all of them. In other words, the 

advantages or disadvantages of a given network might 

not be as clear as shown in our evaluations. This is an 

argument against the better-performing, more-expensive 

networks, because in real set-ups the benefit of using 

them will be diluted. The extent of this dilution is 

application-dependent. Furthermore, the collection of 

workloads used in this work might not be 

representative—and probably is not—of all actual 

workloads used at supercomputing centers. A thorough 

study should be customized for a particular site, taking 

in mind the applications that are executed frequently. 

ACKNOWLEDGMENTS 

This work has been supported by the Spanish Ministry 

of Education and Science, grant TIN2007-68023-C02-

02, and by Basque Government grant IT-242-07. Mr. 

Javier Navaridas is supported by a doctoral grant of the 

UPV/EHU. 

REFERENCES 

[1] Barcelona Supercomputing Center “Mare Nostrum”. Available 

at: http://www.bsc.es/ 

[2] C Clos: “A Study of Non-Blocking Switching Networks” Bell 
System Technical Journal, March 1953, pp.406-424.) 

[3] Cray Inc., “Cray XD1 Overview”. Available at: http://www.cray 

.com/ products/xd1/ 
[4] WJ Dally et al., “The BlackWidow High-Radix Clos Network”, 

Proceedings of the 33rd annual international symposium on 

Computer Architecture, p.16-28, 2006, June 17-21. 
[5] JJ Dongarra, HW Meuer, E Strohmaier. “Top500 Supercomputer 

sites”. Nov. 2007 edition. Available at: http://www.top500.org/ 

[6] H El-Rewini, and M Abd-El-Barr “Advanced computer 
architecture and parallel processing” Wiley, 2005 (ISBN: 978-0-

471-46740-3) 

[7] Infiniband Trade Association. “Infiniband® Trade Asociation”. 
Available at: http://www.infinibandta.org 

[8] CE Leiserson. “Fat-trees: Universal networks for hardware 

efficient supercomputing”. IEEE transactions on Computers, C-
34(10):892–901, October 1985. 

[9] CE Leiserson et al., “The Network Architecture of the 

Connection Machine CM-5”, Symposium on Parallel Algorithms 
and Architectures (April 1992). 

[10] Myricom. “Myrinet home page”. Available at: 

http://www.myri.com/ 
[11] NASA Advanced Supercomputing (NAS) division. “NAS 

Parallel Benchmarks” Available at: http://www.nas.nasa.gov/ 

Resources/Software/npb.html 
[12] J Navaridas and J Miguel-Alonso. “Realistic Evaluation of 

Interconnection Networks Using Synthetic Traffic”. 8th 

International Symposium on Parallel and Distributed Computing. 
June 30-July 4, 2009. Lisbon, Portugal. 

[13] J Navaridas, J Miguel-Alonso, FJ Ridruejo. "On synthesizing 

workloads emulating MPI applications". The 9th IEEE 
International Workshop on Parallel and Distributed Scientific 

and Engineering Computing (PDSEC-08). April 14-18, 2008, 

Miami, Florida, USA. 
[14] J Navaridas, J Miguel-Alonso, FJ Ridruejo, W Denzel. 

"Reducing Complexity in Tree-like Computer Interconnection 

Networks". Technical report EHU-KAT-IK-06-07. Department 
of Computer Architecture and Technology, UPV/EHU. 

Submitted to Journal on Parallel Computing. 

[15] F Petrini, W Feng, A Hoisie, S Coll and E Frachtenberg. “The 
Quadrics Network: High-Performance Clustering Technology”. 

IEEE Micro 22, 1 (Jan. 2002), 46-57. 
[16] F Petrini and M Vanneschi. “k-ary n-trees: High Performance 

Networks for Massively Parallel Architectures”. In Proceedings 

of the 11th International Parallel Processing Symposium, 
IPPS’97, p. 87–93, Geneva, Switzerland, 1997. 

[17] F.J. Ridruejo, J. Miguel-Alonso. "INSEE: an Interconnection 

Network Simulation and Evaluation Environment". Lecture 
Notes in Computer Science, Volume 3648 / 2005 (Proc. Euro-Par 

2005), Pages 1014 - 1023. 

[18] Sandia National Labs, “ASCI Red”. Available at: 
http://www.sandia .gov/ASCI/Red/

 


